Youth Bioinformatics Symposium 2016

Cecilia Arighi Hongzhan Huang Karen Ross C.R. Vinayaka Cathy Wu

Protein Information Resource Georgetown University Medical Center University of Delaware

Outline

- I. Historical Background
- II. Searching for Protein Information in "Free-Text" Resources
- III.The UniProtKB database
- IV. Protein Sequence Similarity Search
- V. Multiple Sequence Alignment (MSA)

I. Historical Background

The Central Dogma of Modern Biology

www.worldofteaching.com

- Proteins are composed of chains of amino acids
- Size and chemical properties of amino acids vary

What Do Proteins Do?

https://publications.nigms.nih.gov/structlife/chapter1.html

Deluge of sequence data

Dr. Margaret Dayhoff (1925 – 1983)

- Interested in the possibility of deducing the evolutionary connections of the biological world from sequence evidence
- Formulated the first probability model of protein evolution PAM substitution matrix
- The origin of the single-letter AA code
- Published the Atlas of Protein Sequence and Structure (1965-79), which became the Protein Information Resource Protein Sequence Database (PIR-PSD)

"We shift over our fingers the first grains of this great outpouring of information and say to ourselves that the world be helped by it. The Atlas is one small link in the chain from biochemistry and mathematics to sociology and medicine."

Margaret O. Dayhoff to Susan Tideman, 18 October 1968, National Biomedical Research Foundation Archives

"There is a tremendous amount of information regarding evolutionary history and biochemical function implicit in each sequence and the number of known sequences is growing explosively. We feel it is important to collect this significant information, correlate it into a unified whole and interpret it"

Margaret O. Dayhoff to Carl Berkley, 27 February 1967, National Biomedical Research Foundation Archives

Quoted in: An Introduction to Molecular Evolution and Phylogenetics by Lindell Bromham

Protein Information Resource

http://proteininformationresource.org

National and international collaborative networks

II. Searching for Protein Information in "Free-Text" Resources

Question

If you wanted to find information about a protein and the diseases it was associated with, where would you look? What would search for?

Some Possible Answers

Biomedical Literature Resource: Mational Library of Medicine Mational Library of Medicine Mational Library of Medicine

- Medline
 - ~26 million references to journal articles in life sciences with a concentration on biomedicine.
 - Indexed with NLM's <u>Medical Subject Headings</u> (MeSH[®])
- PubMed (<u>http://www.ncbi.nlm.nih.gov/pubmed</u>)
 Pub
 - Provides free access to MEDLINE
 - Links to full-text articles found in <u>PubMed Central</u> or at publisher web sites, and other related resources.
 - Provides Advanced search, and special filters.

Common issues

-Too many articles , e.g keyword p53

Pub Med.gov	PubMed	○ p53	Search results
US National Library of Medicine National Institutes of Health		Create RSS	Items: 1 to 20 of 80857

Possible solutions: Use Filters, MeSH terms, or Boolean operators to scope results

-Retrieval of a subset of articles due to narrow search (not including synonyms), e.g compare CRYAA alone and including alphaA-crystallin

Common issues

-Articles not relevant to the query due to many possible meanings for the word, e.g. CPSI

National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) symptom evaluation in

 <u>multinational cohorts of patients with chronic prostatitis/chronic pelvic pain syndrome.</u> Wagenlehner FM, van Till JW, Magri V, Perletti G, Houbiers JG, Weidner W, Nickel JC. Eur Urol. 2013 May;63(5):953-9. doi: 10.1016/j.eururo.2012.10.042. Epub 2012 Nov 2.

MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma.

 Nagarajan P, Tober KL, Riggenbach JA, Kusewitt DF, Lehman AM, Sielecki T, Pruitt J, Satoskar AR, Oberyszyn TM. Mol Cancer Res. 2014 Sep;12(9):1292-302. doi: 10.1158/1541-7786.MCR-14-0255-T. Epub 2014 May 21.

- Human carbamoyl phosphate synthetase (I (CPSI): insights on the structural role of the unknown
- 5. function domains.

Lopes-Marques M, Igrejas G, Amorim A, Azevedo L. Biochem Biophys Res Commun. 2012 May 11;421(3):409-12. doi: 10.1016/j.bbrc.2012.04.033. Epub 2012 Apr 10. Review.

Technol Cancer Res Treat. 2016 May 9. pii: 1533034616648059. [Epub ahead of print]

Investigation of the Impact of Cell Cycle Stage on Freeze Response Sensitivity of Androgen-Insensitive Prostate Cancer.

Santucci KL¹, Baust JM², Snyder KK², Van Buskirk RG³, Baust JG⁴.

Author information

¹Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA Institute for Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA (CPSI Biotech, Dwego, NY, USA ksantucci@binghamton.edu.

Some Tips for PubMed Searches

- Use Filters to narrow your search e.g. selecting species human
- Use Advanced Search to narrow your search:

Boolean operators AND, OR, NOT

e.g. to retrieve articles on CPSI that are less likely to be about prostatitis score,

search for CPSI NOT prostatitis

- Search for phrases in quotes e.g. "breast cancer"
- Use Wildcards * to expand your query

Phosphoryl*

*Results can be saved locally, so you can review them at a later time

Search details phosphoryl[All Fields] OR phosphoryl'ees[All Fields] OR phosphoryl'es[All Fields] OR phosphoryla[All Fields] OR phosphorylability[All Fields] OR

Expanded Query

Hands-On #1: Protein Search

Search for information about HEXA
 -What is its biochemical function?
 -What disease is it associated with?
 -Other information?

Divide into groups and each group use a different searching method (Google (not Wikipedia), Google Scholar, Wikipedia, PubMed)

Discussion

- Did you find the information you were looking for?
- What were some pros and cons of the search method/resource you used?

III. Protein Resources UniProtKB Database

The Universal Protein Resource www.uniprot.org

✓ comprehensive
 ✓ high quality
 ✓ freely accessible

The mission of <u>UniProt</u> is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and functional information.

UniProtKB, the Knowledge base component of UniProt

Where data becomes structured knowledge

Central hub for the collection of functional information on proteins. The core data mandatory for each UniProtKB entry:

- amino acid sequence
- protein name or description
- taxonomic data
- citation information

What's in UniProtKB?

UniProtKB - P02489 (CRYAA_HUMAN)

Hands On #2 – UniProtKB

- 1. Go to UniProtKB (<u>http://www.uniprot.org/</u>) and search for the entry for human HEXA
- 2. What is the UniProtKB identifier for this protein?
- 3. What is the function of this protein?
- 4. What disease is associated with defects in this protein?
- 5. Give an example of a genetic variant with publication support that leads to the infantile form of the disease.
- 6. Download the sequence of Isoform 1 in FASTA format

Hands On #2 – UniProtKB (Answers)

- 1. Go to UniProtKB (<u>http://www.uniprot.org/</u>) and search for the entry for human HEXA
- 2. What is the UniProtKB identifier for this protein? P06865
- 3. What is the function of this protein? Degrades GM2-gangliosides. A ganglioside is a type of glycolipid (sugar + lipid).
- 4. What disease is associated with defects in this protein? GM2gangliosidosis 1 (aka Tay-Sachs Disease)
- 5. Give an example of a genetic variant with publication support that leads to the infantile form of the disease. Several examples in the variant table in the Pathology & Biotech section of the entry.

Hands On #2 – UniProtKB (Answers)

6. Download the sequence of Isoform 1 in FASTA format. Click FASTA button in above Isoform 1 sequence in Sequence section.

>sp|P06865|HEXA_HUMAN Beta-hexosaminidase subunit alpha OS=Homo sapiens GN=HEXA PE=1 SV=2 MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDVSSAAQPGCSV LDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVVTPGCNQLPTLESVENYTLTI NDDQCLLLSETVWGALRGLETFSQLVWKSAEGTFFINKTEIEDFPRFPHRGLLLDTSRHY LPLSSILDTLDVMAYNKLNVFHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVK EVIEYARLRGIRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQLESFYIQTLL DIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNYMKELELVTKAGFRALLSAPW YLNRISYGPDWKDFYIVEPLAFEGTPEQKALVIGGEACMWGEYVDNTNLVPRLWPRAGAV AERLWSNKLTSDLTFAYERLSHFRCELLRRGVQAQPLNVGFCEQEFEQT

Hands On #2 – UniProtKB (Answers) Searching for a protein in UniProtKB

			- 10-				1.19			
	he	exa					😣 Adva	Anced - Q Searc	h	
BLAST Alig				1		A	· ····································			11
UniProt	U	niProtKB 🗸	hexa					Advance	Q Searc	h
The mission o functional info) ma	apping	X		P.C. R	No. Contraction	1701	7.0	Help Cont	act
_{UniPr} UniProtKB r	es	sults					🕜 At	oout UniProtKB	🛱 Basket 🚺	1 -
Knowled Filter by	*	BLAST	Align 土 Downloa	d	Add to basket	Columns >	1 to	o 25 of 1,679	Show 25	٥
Swiss Reviewed (111)		Did yo	u mean exa? 43,6	96 res	sult(s) found					×
(551, Ma Unreviewed annotat (1,568)		Filter	to refine se	arch	Protein names 🖨	Gene names 🕈		Organism 🖨	Length 🖨	Prot
					ta- hexosaminidase subunit alpha	HEXA		Homo sapiens (Human)	529	Glyco 20 fa
(62,14 Organisms Auto Human (33) annotatec Mouse (10)		P29416	HEXA_MOUSE	÷.	Beta- hexosaminidase subunit alpha	Неха		Mus musculus (Mouse)	528	Glyce 20 fa
Fruit fly (8) Getting S Zebrafish (6)		POA3R4	HEXA_STRR6	☆	DNA mismatch repair protein HexA	hexA spr1888		Streptococcus pneumoniae (strain ATCC BAA-255 /	844	DNA repa
Q Text B. subtilis (2)								R6)		
Other organisms		P0A3R3	HEXA_STRPN	<u>ک</u>	DNA mismatch repair protein HexA	hexA SP_2076		Streptococcus pneumoniae serotype 4	844	DNA repa

UniProtKB (<u>http://www.uniprot.org/</u>)

Hands On #2 – UniProtKB (Answers) Search Results

UniProt	UniProtKB	hexa	T			Advance	Q Searc	ch
BLAST Align Retrieve/	ID mapping	X		P.S. R.	Same States		Help Cont	act
UniProtKB	results	1				About UniProtKB	🛱 Basket 🚺	1 -
Filter by ⁱ	UniPro	Dt Downloa	id 🏦	Add to basket	Columns	1 to 25 of 1,679	Show 25	\$
Reviewed (111)	Identifi	er ^{hean} exa? 43,6	96 res	sult(s) found				×
Unreviewed		Entry name 🕈		Protein names 🖨 😥	Gene names 🗢	Organism 🗘	Length 🗘	Prot
(1,568) Trembl Popular	□ P06865	HEXA_HUMAN	£	Beta- hexosaminidase subunit alpha	HEXA	Homo sapiens (Human)	529	Glyca 20 fa
Organisms Human (33) Mouse (10)	P29416	HEXA_MOUSE		Beta- hexosaminidase subunit alpha	Неха	Mus musculus (Mouse)	528	Glyca 20 fa
Fruit fly (8) Zebrafish (6) B. subtilis (2)	D POA3R4	HEXA_STRR6	Ŷ	DNA mismatch repair protein HexA	hexA spr1888	Streptococcus pneumoniae (strain ATCC BAA-255 /	844	DNA repai
Other organisms	D POA3R3	HEXA_STRPN		DNA mismatch repair protein HexA	hexA SP_2076	R6) Streptococcus pneumoniae serotype 4	844	DNA repai

Hands On #2 – UniProtKB (Answers) UniProtKB Entry Page I

UniProtKB - P06865 (HEXA_HUMAN)

Sections of the Record	BLAST TAlign		dd to basket 🕓 His		Basic Info	Feedback 🖻 Help video	Other tutorials and videos
Feature None	Organism Homo sa	piens (H	Function	al			
✓ Function	Status Rev	ewed - /	nformati	ON imental eviden	ce at protein leve	el ⁱ	
Vames & Taxonomy	Function ⁱ		7 7				
Subcellular location		radation of GM2	gangliosides, and	variety of other molecu	les containing ter	minal N-acetyl hexosamine	s, in the brain and other
Pathology & Biotech			•	es. The form S has no m			
PTM / Processing	Catalytic activity ⁱ	on roducing N	cotul D hovecomin	e residues in N-acetyl-be		- Molecular function ⁱ	former and in the second
Expression	Sites	ion-reducing N-a	acetyi-D-nexosamin	e residues in N-acetyi-be	la-D-nexosal		sferase activity Source: UniProtKB - nidase activity Source: UniProtKB-EC
Interaction							ion activity & Source: MGI 👻
Structure	Feature key	Position(s)		scription			
 Family & Domains 	Active site ¹	323 - 323	1 Pro	ton donor 🦨 By similarity	GO	 Biological processⁱ carbohydrate metabolic 	: process & Source: Reactome
						 chondroitin sulfate cata 	bolic process & Source: Reactome

Functional

Information

(Controlled

Vocabulary)

- chondroitin sulfate metabolic process & Source: Reactome
- glycosaminoglycan biosynthetic process & Source: UniProtKB -

🗰 Basket 11 🖥

- glycosaminoglycan metabolic process & Source: Reactome
- glycosphingolipid metabolic process & Source: Reactome
- hyaluronan catabolic process & Source: Reactome
- hyaluronan metabolic process Source: Reactome
- keratan sulfate catabolic process & Source: Reactome
- keratan sulfate metabolic process Source: Reactome
- small molecule metabolic process & Source: Reactome
- sphingolipid metabolic process & Source: Reactome

Complete GO annotation...

Keywords - Molecular functionⁱ Glycosidase, Hydrolase

Hands On #2 – UniProtKB (Answers) Disease and Variant Information

PATHOLOGY & BIOTECH

Pathology & Biotechⁱ

Involvement in disease

GM2-gangliosidosis 1 (GM2G1) # 22 Publications -

The disease is caused by mutations affecting the gene represented in this entry.

Disease description: An autosomal recessive lysosomal storage disease marked by the accumulation of GM2 gangliosides in the neuronal cells. It is characterized by GM2 gangliosides accumulation in the absence of HEXA activity, leading to neurodegeneration and, in the infantile form, death in early childhood. It exists in several forms: infantile (most common and most severe), juvenile and adult (late-onset). See also OMIM:272800

Feature key	Position(s)	Length	Description	Graphical view	Feature identifier	Actions
Natural variant ⁱ	25 – 25	1	$P \rightarrow S$ in GM2G1; late infantile. # 1 Publication -		VAR_003202	
Natural variant ⁱ	39 - 39	1	$L \rightarrow R$ in GM2G1; infantile.		VAR_003203	
Natural variant ⁱ	127 - 127	1	$L \rightarrow F$ in GM2G1. \checkmark 1 Publication \checkmark		VAR_022439	
Natural variant ⁱ	127 - 127	1	$L \rightarrow R$ in GM2G1; infantile.		VAR_003204	
Natural variant ⁱ	166 - 166	1	$R \rightarrow G$ in GM2G1; late infantile. # 1 Publication -		VAR_003205	
Natural variant ⁱ	170 - 170	1	$R \rightarrow Q$ in GM2G1; infantile; inactive or unstable protein. \swarrow 1 Publication \checkmark		VAR_003206	
Natural variant ⁱ	170 - 170	1	$R \rightarrow W$ in GM2G1; infantile. # 1 Publication \checkmark		VAR_003207	
Natural variant ⁱ	178 - 178	1	$R \rightarrow C$ in GM2G1; infantile; inactive protein.		VAR_003208	
Natural variant ⁱ	178 - 178	1	$R \rightarrow H$ in GM2G1; infantile; inactive protein.		VAR_003209	
Natural variant ⁱ	178 - 178	1	$R \rightarrow L$ in GM2G1; infantile.		VAR_003210	

Hands On #2 – UniProtKB (Answers) Disease and Variant Information

PATHOLOGY & BIOTECH

Feature key	Position(s)	Length	Description	Graphical view	Feature identifier	Actions
Natural variant ⁱ	25 – 25	1	$P \rightarrow S$ in GM2G1; late infantile. # 1 Publication -		VAR_003202	
Natural variant ⁱ	39 - 39	1	$L \rightarrow R$ in GM2G1; infantile.		VAR_003203	
Natural variant ⁱ	127 - 127	1	$L \rightarrow F$ in GM2G1.		VAR_022439	
Natural variant ⁱ	127 - 127	1	$L \rightarrow R$ in GM2G1; infantile.		VAR_003204	
Natural variant ⁱ	166 - 166	1	$R \rightarrow G$ in GM2G1; late infantile. # 1 Publication -		VAR_003205	
Natural variant ⁱ	170 - 170	1	$R \rightarrow Q$ in GM2G1; infantile; inactive or unstable protein. \checkmark 1 Publication \checkmark		VAR_003206	
Natural variant ⁱ	170 - 170	1	$R \rightarrow W$ in GM2G1; infantile. # 1 Publication =		VAR_003207	
Natural variant ⁱ	178 - 178	1	F Manual assertion based on experiment in ¹		VAR_003208	
Natural variant ⁱ	178 - 178	1		ele in exon 7 in	VAR_003209	
Natural variant ⁱ	178 - 178	1	two compound heterozygotes ea novel mutation." Fernandes M., Kaplan F., Natowicz I Kolodny E., Kaback M., Hechtman P	4., Prence E.,	VAR_003210	
Natural variant ⁱ	180 - 180	1	Hum. Mol. Genet. 1:759-761(1992) PMC] [Abstract]		VAR_003211	

Hands On #2 – UniProtKB (Answers) Sequence Information

Download Sequence

Isoform 1 (identifier: P06865-1) [UniParc] 🕹 FASTA 🛱 Add to basket

 \checkmark

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry. « Hide

10	20	30	40	50	
MTSSRLWFSL	LLAAAFAGRA	TALWPWPQNF	QTSDQRYVLY	PNNFQFQYDV	
60	70	80	90	100	
SSAAQPGCSV	LDEAFQRYRD	LLFGSGSWPR	PYLTGKRHTL	EKNVLVVSVV	
110	120	130	140	150	
TPGCNQLPTL	ESVENYTLTI	NDDQCLLLSE	TVWGALRGLE	TFSQLVWKSA	
160	170	180	190	200	
EGTFFINKTE	IEDFPRFPHR	GLLLDTSRHY	LPLSSILDTL	DVMAYNKLNV	
210	220	230	240	250	
FHWHLVDDPS	FPYESFTFPE	LMRKGSYNPV	THIYTAQDVK	EVIEYARLRG	
260	270	280	290	300	
IRVLAEFDTP	GHTLSWGPGI	PGLLTPCYSG	SEPSGTFGPV	NPSLNNTYEF	
310	320	330	340	350	
MSTFFLEVSS	VFPDFYLHLG	GDEVDFTCWK	SNPEIQDFMR	KKGFGEDFKQ	
360	370	380	390	400	
LESFYIQTLL	DIVSSYGKGY	VVWQEVFDNK	VKIQPDTIIQ	VWREDIPVNY	
410	420	430	440	450	
MKELELVTKA	GFRALLSAPW	YLNRISYGPD	WKDFYIVEPL	AFEGTPEQKA	
460	470	480	490	500	
LVIGGEACMW	GEYVDNTNLV	PRLWPRAGAV	AERLWSNKLT	SDLTFAYERL	
510	520				
SHFRCELLRR	GVQAQPLNVG	FCEQEFEQT			

Question

How did searching UniProtKB compare to searching other resources (e.g., Google, PubMed) for finding information about a protein and associated diseases? IV. Protein Sequence Similarity Search

Important Concepts

Homologous sequences share a common ancestor

From: http://www.treefam.org/family/TF332967

At the molecular level, homology is similarity between sequences that is due to their shared ancestry

We use sequence similarity that is statistically significant as evidence of homology

Searching for similar sequences

Basic Local Alignment Search Tool (BLAST)

- Use of a set of algorithms to compare a query sequence to all the sequences in a specific database and find high scoring pairs of alignments
- Based on Pair-Wise Alignments
- The **score** of each comparison reflects the degree of similarity between the two sequences (the higher the greater the degree of similarity)
- The Expectation value or E-value tells you how many alignments with a given score are expected by chance (the closer to 0 the better)

Sequence comparison

Sequences are compared directly, position by position.

Score Key match: +1 no match: -1 gap: -1

- In reality, some amino acid substitutions are more likely than others to be tolerated during natural selection/evolution
- The frequency of occurrence of the 20 amino acids within proteins varies a lot

Leucine, Isoleucine, Alanine are frequently found in proteins Tryptophan and Cysteine occur with less frequency

Scoring Matrix Example

Running Protein BLAST from UniProt

(http://www.uniprot.org)

Protein BLAST Parameters

Target database ⁱ	E-Thre	shold	Matrix ⁱ Filtering ⁱ		Filtering ⁱ	Gapped ⁱ Hits ⁱ			
UniProtKB	\$	10	\$	Auto	\$	None	\$	yes 🛊	1000 \$

Adjusting BLAST parameters can affect the outcome of your analysis.

- Target database: database against which the search is performed
- E-Threshold: maximum E-value that will be displayed
- Matrix: scoring matrix that will be used (common scoring matrices are call PAM or BLOSUM followed by a number (e.g., BLOSUM62)
- Filtering: allows you to filter out regions of low-complexity sequence that tend to give meaningless matches
- Gaps: sets whether gaps in alignments are allowed
- Hits: sets the number of returned hits

BLAST Results I

- Overview box shows UniProt identifier, name, matched region, and percent identity ranked in order of score
- Filters can be used to restrict results to reviewed entries only or to particular organisms of interest

BLAST Results II

Alianments

BLAST E Alig	1 to 25 of 1,000	Show 25 🛊	
Entry	Alignment overview	Info	Status 🗶
Query: sp P02	2489 CRYAA_HUMAN B20160412468PZIEDUP		
G3R496	G3R496_GORGO - Uncharacterized protein - Gorilla gorilla View alignment	E-value: 1.7E-123 Score: 916 Ident.: 100.0%	
H2QL35	H2QL35_PANTR - Uncharacterized protein - Pan troglodytes View alignment	E-value: 1.7E-123 Score: 916 Ident.: 100.0%	
P02489	CRYAA_HUMAN - Alpha-crystallin A chain Homo sapiens (Human) - View alignment	E-value: 1.7E-123 Score: 916 Ident.: 100.0%	<u>}</u>
G1RXG3	G1RXG3_NOMLE - Uncharacterized protein - Nomascus leucoge View alignment	E-value: 270E-123 Score: 909 Ident.: 98.8%	

- Alignments panel shows matching regions as well as E-value, score, and percent identity for each result.
- Color indicates percent identity. 100 80 60 10 10 10 20

Hands On #3 – Protein BLAST

Go to <u>http://www.uniprot.org</u> and run protein BLAST on the following sequence. The sequence is an uncharacterized protein from *Latimeria chalumnae* (West Indian ocean coelacanth).

>Mystery Sequence ALEYKCNINMTAETADCFNSSQITASEQEALVKPKQLLLKLLKCAGAQKDIFTMKEVIYY LGQYIMAKQLYDKNQQHIVHCSNDLLGELFGVQSFSVKEPRRLYAMISKNLLPVNQEDPI GIHVSMKETRCHRGSETGVKDNTQEVAGEKPAAPVTASCSTTSCRRTFSETEDAVSDDPL SERRRKRHKSDSISLTFDDSLSWCVISGLRRDRSSSESTESPSNPDSDVVSVSENSKDSW FDQDSDSDHFSVEFEVESVYSENYSDNEEAQDVTDEDDEFYQVTIYEAEDSDDSFTEDTE ISVADYWTCTECEEVNPPLPRHCNRCWALRKDWLPENTKSSSCKSLDLKEPDREEGIDVP DCKKTKEDPSCDSNVDVNEEDMTVQSSESQETNISQPSTSSSFIGGSQEESRETEREESS ESTLPLTCLEPCVICQSRPKNGCIVHGRTGHLMACYTCAKKLKRRNKPCPVCRQPIQMVV

Latimeria chalumnae

Hands On #3 – Protein BLAST

Look at the BLAST results

1. What is the top result?

Filter by reviewed entries, and look over the top 10 results.

- 1. Do they have significant e-values?
- 2. Approximately what % identity do they have to the query protein?
- 3. Is the similarity over the full length of the protein?
- 4. What are the names of the top hits?

Do not close the window with the BLAST results!! You will need it again.

Hands On #3 – Protein BLAST (Answers)

Look at the BLAST results

1. What is the top result?

H3APM8 Uncharacterized Protein from *Latimeria chalumnae*. This is the UniProt record for the sequence you input into BLAST. It shows 100% identity over the full length (as you would expect).

Filter by reviewed entries, and look over the top 10 results.

- 1. Do they have significant e-values? Yes—0 to 11E-165.
- 2. Approximately what % identity do they have to the query protein? 53%-62%
- Is the similarity over the full length of the protein?
 For the first eight results, yes. In the last two cases, Q00987-8 and P56950-2 the match does not include the N-terminal region of the query protein.
- 4. What are the names of the top hits?E3 ubiquitin-protein ligase Mdm2

V. Multiple Sequence Alignment (MSA)

Multiple Sequence Alignment

 So far, we have talked about BLAST, which aligns pairs of sequences and comes up with a relatedness score based on how similar the amino acids are at each position.

> Pairwise alignment: Protein 1 **a b a c d** Protein 2 **a b e c d**

• Multiple sequence alignment (MSA) extends the same idea and provides more information

Multiple Sequence Alignment

"Two homologous sequences whisper... GFSVTIPYK<mark>K</mark>TVVPFL<mark>DELSPE</mark>ALSIGAVN[.] GF<mark>N</mark>VTIPYKT<mark>K</mark>IL<mark>K</mark>YIEKLVYPA<mark>DK</mark>IGAVN[.]

A multiple sequence alignment shouts"

Prof. Arthur M Lesk

GFSVTI PYKKTVVPFLDELSPEALSIGAVN GFNVTI PYKTKILKYIEKI VYPADKIGAVN GGNVTI PHKEAAFRLAD RPDELSAELGAAN GCNITS PFKERAYQLAD EYSQRAKLAEACN GVNLTI PLKEAALAHLDWV SPEAQRIGAVN GANVTV PFKEEAFARADEL TERAALAGAVN GANVTI PFKERAFQICDKI KGIALECASVN GLNVTI PYKEQVIPFLDEL DKDTAKIGAVN

Multiple Sequence Alignment

MSA can reveal patterns of conservation in sequences that allow us to determine which residues are under selective constraint (may be important for protein function)

1	-MAFDGTWKVDRNENYEKFM	EKMGINVVKRKL	GAHDNLKLTITQEGNKF	TVKESSNFR	57	P02693	FABPI_RAT
1	-MAFDSTWKVDRSENYDKFM	EKMGVNIVKRKL	AAHDNLKLTITQEGNKF	TVKESSAFR	57	P12104	FABPI HUMAN
1	-MAFDGTWKVDRNENYEKFM	EKMGINVMKRKL	GAHDNLKLTITQDGNKF	TVKESSNFR	57	P55050	FABPI MOUSE
1	-MAFDGTWKVDRSENYEKFM	EVMGVNIVKRKL	GAHDNLKVIIQQDGNNF	TVKESSTFR	57	Q91775	FABPI XENLA
1	-MAFDGAWKIDRNENYDKFM	EKMGINVVKRKL	AAHDNLKLIITQEGNKF	TVKESSTFR	57	Q45KW7	FABPI PIG
1	MPNFAGTWKMRSSENFDELLE	KALGVNAMLRKV	AVAAASKPHVEIRQDGDQF	YIKTSTTVR	60	P62965	RABP1 MOUSE
1	MPNFAGTWKMRSSENFDELLE	KALGVNAMLRKV	AVAAASKPHVEIRQDGDQF	YIKTSTTVR	60	P62964	RABP1 BOVIN
1	MPNFAGTWKMRSSENFDELLE	KALGVNAMLRKV	AVAAASKPHVEIRQDGDQF	YIKTSTTVR	60	P40220	RABP1 CHICK
1	MPNFAGTWKMRSSENFDELLE	KALGVNAMLRKV	AVAAASKPHVEIRQDGDQF	YIKTSTTVR	60	P29762	RABP1 HUMAN
	*** . **		* *.**				-
				-			
58	NIDVVFELGVDFAYSLADGTH	ELTGTWTMEG	NKLVGKFKRVDNGKELIAV	REISGNELI	115	P02693	FABPI_RAT
58	NIEVVFELGVTFNYNLADGTH	ELRGTWSLEG	NKLIGKFKRTDNGNELNTV	REIIGDELV	115	P12104	FABPI HUMAN
58	NIDVVFELGVNFPYSLADGT	ELTGAWTIEG	NKLIGKFTRVDNGKELIAV	REVSGNELI	115	P55050	FABPI MOUSE
58	NIEIKFTLAQPFEYSLADGTH	ELNGAWFLQD	NQLLGTFTRKDNGKVLQTT	RQIIGDELV	115	Q91775	FABPI XENLA
58	NIEIVFELGVTFNYSLADGTH	ELTGNWNLEG	NKLVGKFQRVDNGKELNTV	REIIGDEMV	115	Q45KW7	FABPI_PIG
61	TTEINFKVGEGFEEETVDGR	KCRSLPTWENEN	KIHCTQTLLEGDGPKTYWT	RELANDELI	120	P62965	RABP1 MOUSE
61	TTEINFKVGEGFEEETVDGR	CRSLPTWENEN	KIHCTQTLLEGDGPKTYWT	RELANDELI	120	P62964	RABP1 BOVIN
61	TTEINFKIGESFEEETVDGR	KCRSLATWENEN	KIYCKQTLIEGDGPKTYWT	RELANDELI	120	P40220	RABP1 CHICK
61	TTEINFKVGEGFEEETVDGR	KCRSLATWENEN	KIHCTQTLLEGDGPKTYWT	RELANDELI	120	P29762	RABP1 HUMAN
		· · * ·	: :* .	<mark>*</mark> :: :*::			
	_						
116		32 P02693	FABPI_RAT				
116	QTYVYEGVEAKRIFKKD 13		FABPI_HUMAN				
116	QTYTYEGVEAKRFFKKE 13	32 P55050	FABPI_MOUSE				
116		32 Q91775	FABPI_XENLA				
116	QTYVYEGVEAKRIFKKN 13	32 Q45KW7	FABPI_PIG				
121	LTFGADDVVCTRIYVRE 13	37 P62965	RABP1 MOUSE				
121	LTFGADDVVCTRIYVRE 13	37 P62964	RABP1 BOVIN				
121	LTFGADDVVCTRIYVRE 13	37 P40220	RABP1_CHICK				
121	LTFGADDVVCTRIYVRE 13	37 P29762	RABP1_HUMAN				
	: ::::						
				_			

You may add additional sequences to this alignment (in FASTA format)

Gunasekaran et. al, 2004, Proteins: Structure, Function, and Bioinformatics, 54, 2:179-194.

Arg and Gln conserved in all FABPs

Arg and Tyr conserved in all CRABPs

Performing MSA with UniProt

Select several UniProt search results to align...

@ About UniProtKB results									
Filter by	×	BLIST 👅	Align 土 Downloa	ad	Add to basket	Columns	4 1 t	to 25 of 4,63	3 🕨 Show 25 🛊
Reviewed (189)	=	Entry 🌢	Entry name 🌢		Protein names 🖨 🕟	Gene names 🌢	Organism 🗘	Length 🗘	Protein families 🗢
						3 result(s) selected. (Clear selection)			
Unreviewed (4,444)		P02489	CRYAA_HUMAN		Alpha-crystallin A chain	CRYAA CRYA1,HSPB4	Homo sapiens (Human)	173	Small heat shock protein (HSP20)
Popular organisms Human (39)		P24623	CRYAA RAT	R h	Alpha-crystallin A	Cryaa Crya1	Rattus	196	family Small heat shock
Zebrafish (24)		124025			chain	ciyuu ciyur	norvegicus (Rat)	190	protein (HSP20) family
C. elegans (23) Fruit fly (17)		PV2511	CRYAB_HUMAN	ł	Alpha-crystallin B chain	CRYAB CRYA2,HSPB5	Homo sapiens (Human)	175	Small heat shock protein (HSP20) family
Mouse (16) Other organisms		P23928	CRYAB_RAT	삹	Alpha-crystallin B chain	Cryab	Rattus norvegicus	175	Small heat shock protein (HSP20)
Search terms Filter "alpha crystallin" as: protein name (1,706)		P)2470	CRYAA_BOVIN		Alpha-crystallin A chain	CRYAA CRYA1	(Rat) Bos taurus (Bovine)	173	family Small heat shock protein (HSP20) family
View by Taxonomy		P23927	CRYAB_MOUSE	2	Alpha-crystallin B chain	Cryab Crya2	Mus musculus (Mouse)	175	Small heat shock protein (HSP20) family
Keywords		P9WMK1	ACR_MYCTU	à	Alpha-crystallin	hspX acr,Rv2031c,MTV018.18c	Mycobacterium	144	Small heat shock

Performing MSA with UniProt

... or select several BLAST results to align

*	BLAST 🗷 A	lign 🛃 Download 🏛 Add to basket 🖉 Columns	1 to 25 of 185	Show 25
	Entry	Alignment overview	Info	Status
		6 result(s) selected. (Clear selection)		
	Query: sp l	242930 HSPB1_RAT B2016041375ZM4SGQNZ		
	P42930	HSPB1_RAT - Heat shock protein beta-1 - Rattus norvegicu View alignment	E-value: 1.5E-150 Score: 1,088 Ident.: 100.0%	
	914602	HSPB1_MOUSE - Heat shock protein beta-1 Mus musculus (Mouse) - View alignment	E-value: 43E-147 Score: 1,059 Ident.: 97.1%	
	P15991	HSPB1_CRILO - Heat shock protein beta-1 - Cricetulus longi View alignment	E-value: 84E-141 Score: 1,018 Ident.: 93.0%	*
	P14602-2	HSPB1_MOUSE - Isoform B of Heat shock protein bet Mus musculus (Mouse) - View alignment	E-value: 4.9E-135 Score: 985 Ident.: 91.9%	
	P42929	HSPB1_CANLF - Heat shock protein beta-1 - Canis lupus fami View alignment	E-value: 210E-129 Score: 936 Ident.: 85.2%	
	Q5S1U1	HSPB1_PIG - Heat shock protein beta-1 Sus scrofa (Pig) - View alignment	E-value: 1.6E-126 Score: 930 Ident.: 84.7%	

UniProt Alignment Results

Alignment

- Modified residues of heat shock group are also found in query
- 3 of 4 metal binding residues of crystallin group are conserved in heat shock group
 Maybe heat shock group also hinds metal at those sites?
 - -> Maybe heat shock group also binds metal at these sites?

Hands On #4 - MSA

- Go back to the results page for your BLAST of the *Latimeria chalumnae* uncharacterized protein.
- If you have not already done so, filter results for reviewed entries
- Select the query sequence and the top five BLAST results and perform an alignment.
- Experiment with highlighting the alignment according to different annotations or amino acid properties. Observe whether your mystery sequence is conserved in the highlighted regions.

Hands On #4 – MSA Part II

Highlight the alignment according to the mutagenesis annotation. (This means that the UniProt entry has information about mutagenesis experiments for these residues)

- 1. Find the highlighted residue at position 374 of the human sequence Q00987. Is this residue conserved in the mystery protein?
- 2. In a separate tab, go to the UniProtKB record for Q00987. What was the consequence of mutagenesis at position 374?
- In the alignment, find the highlighted residues at positions 452, 455, and 457. Are these conserved in the mystery protein?
- 4. What are the consequences of mutagenesis of positions 452, 455, and 457?
- 5. Based on these results, do you think it is possible that the mystery protein has ubiquitin ligase activity like the human protein Q00987?

Hands On #4 – MSA Part II (Answers)

Highlight the alignment according to the mutagenesis annotation. (This means that the UniProt entry has information about mutagenesis experiments for these residues)

- Find the highlighted residue at position 374 of the human sequence Q00987. Is this residue conserved in the mystery protein? No
- 2. In a separate tab, go to the UniProtKB record for Q00987. What was the consequence of mutagenesis at position 374? No loss of ubiquitin ligase activity.
- In the alignment, find the highlighted residues at positions 452, 455, and 457. Are these conserved in the mystery protein? Yes
- What are the consequences of mutagenesis of positions 452, 455, and 457? Loss or significant decrease in ubiquitin ligase activity.

Hands On #4 – MSA Part II (Answers)

5. Based on these results, do you think it is possible that the mystery protein has ubiquitin ligase activity like the human protein Q00987?

At least some of the residues that are important for ubiquitin ligase activity (452, 455, and 457) are conserved in the mystery protein. The one residue that we checked that was not conserved (374) seems to be less important for activity. These results are consistent with the possibility that the mystery protein has ubiquitin ligase activity, but we would need to check other critical residues and ultimately do experiments on the mystery protein to see if it really does have the activity.

Take Home Messages

- Pubmed (<u>http://www.ncbi.nlm.nih.gov/pubmed</u>) is an excellent resource for searching high-quality scientific literature. Using advanced querying techniques can help to target your searches to articles you are most interested in.
- UniProtKB (http://www.uniprot.org/) is a centralized resource for protein sequence and function information.
- Protein BLAST and multiple sequence alignments (MSA) can help in assigning functions to uncharacterized proteins and in determining evolutionary relationships among proteins.

More Resources

- UniProtKB tutorials on YouTube: <u>https://www.youtube.com/user/uniprotvideos</u>
- A good introductory paper on BLAST: Using BLAST to Teach "E-value-tionary" Concepts Cheryl A. Kerfeld and Kathleen M. Scott <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032543/</u>
- Our contact information: Cecilia Arighi: arighi@dbi.udel.edu Hongzhan Huang: huang@dbi.udel.edu Karen Ross: ker25@georgetown.edu C.R. Vinayaka: CR.Vinayaka@georgetown.edu Cathy Wu: wuc@dbi.udel.edu